杨世辉

作者:版权所有 Bwin·565net必赢最新版(中国)唯一官方网站浏览:581时间:2020-05-12

信息摘要:

杨世辉,博士,教授,博士生导师,“省部共建生物催化与酶工程国家重点实验室”副主任。

  杨世辉,博士,教授,博士生导师,“省部共建生物催化与酶工程国家重点实验室”副主任。湖北省“楚天学者”特聘教授及湖北省“百人计划”入选者,中国生物发酵产业协会第二届理事会理事。毕业于湖北大学(生物学学士,1993年),武汉大学(微生物学硕士,2000年),及美国加州大学河滨分校(微生物学博士,2005年)。曾先后任职美国能源部橡树岭国家实验室副研究员(Research Associate,2007-2011)及美国国家可再生能源实验室研究员(Staff Scientist,2011-2016)。2016年底加入湖北大学生命科学学院,主要从事微生物代谢工程、合成生物学、系统生物学以及生物能源及重大平台化合物的绿色生物制造等方面研究,先后在Nature Biotechnology,PNAS,Metabolic Engineering等期刊发表SCI论文 50多篇,引用近2000次,H-index 25。长期担任国际学术期刊PLoS ONE 学术编辑,Energies编辑,Frontiers in Bioengineering and Biotechnology及Frontiers in Energy Research副编辑,Frontiers in Microbiology 主题编辑;多次应邀在国际学术会议上做大会报告并作为大会主席及会议主持人。
  姓名:杨世辉;  性别:男;出生年月:1971年7月; 学历:博士
  联系方式Shihui.Yang@hubu.edu.cn; 15607121038
  实验室网站:http://bio.hubu.edu.cn/shihuiyang.htm
  ResearchGate: https://www.researchgate.net/profile/Shihui_YANG
  Google Scholar: https://scholar.google.com/citations?user=efHYCL0AAAAJ&hl=en
  教育背景:
  2000年9月-2005年5月          加州大学河滨分校,微生物博士
  1997年9月-2000年6月          武汉大学,微生物硕士,生命科学学院
  1989年9月-1993年6月          湖北大学,生物学学士
  工作经历:
  2019年-                               bwin必赢唯一官方网站环境科学与工程学院研究生导师(联合培养)
  2016年-                               湖北大学生命科学学院教授, 博士生导师
  “楚天学者”特聘教授,湖北省“百人计划”入选者
  2011年2月-2016                   美国国家可再生能源实验室国家生物能源中心研究员(Scientist)
  2007年2月-2011年2月          美国能源部橡树岭国家实验室生物能源科学中心副研究员(Research Associate)
  2005年5月-2007年2月          威斯康星大学密尔沃基分校生物学系博士后
  2001年9月-2005年5月          加州大学河滨分校微生物专业研究助理
  2001年7月-2001年9月          加州河滨市美国农业部乔治布朗金盐分实验室研究助理
  1993年7月-1997年6月          湖北省襄樊市新药特药公司销售员和质检科科长
  荣誉和奖励:
  2015年12月                           美国国家可再生能源实验室项目贡献奖
  2015年4月                             美国国家可再生能源实验室月度员工奖
  2009年11月                           橡树岭国家实验室生物科学部研究助理卓越成就奖(1年1个)
  2003年和2004年                    加州大学河滨分校GSA Minigrant
  2003年                                  加州大学河滨分校克劳资纪念奖
  2003 年                                 第三届ASM & TIGR微生物基因组会议旅行奖
  2002年                                  加州大学河滨分校詹姆斯和艾德琳华莱士年度奖(1年1个)
  2000年-2005年                    加州大学河滨分校校长卓越奖学金
  1990年-1993年                    湖北大学一等奖学金,二等奖学金,优秀社会调查奖,优秀大学生论文奖,优秀学生奖
  学术社会活动:
  学术杂志编辑:      PLoS ONE (IF3.23) 学术编辑(Academic Editor); Energies (IF2.7) 编辑; Frontiers in Bioengineering and Biotechnology (IF5.12)与Frontiers in Energy Research副编辑(Associated Editor); Frontiers in Microbiology主题编辑(Topic Editor); Dataset Papers in Bioinformatics 编委
  学术杂志审稿人:  Science, PNAS,PLoS Genetics, Molecular and Cellular Proteomics, Bioinformatics, PLoS One, Bioresource Technology, Biotechnology for Biofuels, BMC Genomics, BMC Microbiology, FEMS Microbiology Letters, Proteome Science, Current Proteomics, Biomass and Bioenergy, Applied Microbiology and Biotechnology, Enzyme and Microbial Technology, Phytopathology, World Journal of Microbiology and Biotechnology, and Biofuels etc.
  学术竞赛裁判:          2008年美国能源部第一届美国能源部科学和能源研究挑战竞赛五位生物部裁判之一
  国际会议主持人:    35th, 36th, 37th, 38th Symposium on Biotechnology for Fuels and Chemicals, Society for Industrial Microbiology & Biotechnology (SIMB, 2013年-2016年),2018 2nd International Zymomonas Symposium: Metabolic Engineering and Synthetic Biology
  欧文氏菌属基因组测序主要注释和校对人员:检查由30多位国际研究人员组成的欧文氏菌属Erwinia chrysanthemi 3937基因组测序注释并负责校对以及基因组新陈代谢途径分析
  学术协会会员:SIM (美国工业微生物协会,2006) , Sigma XI (科学研究协会,2006), AAAS (美国科学促进协会,2004), ASM (美国微生物学协会,2003), APS (美国植物病理协会,2002)
  专利:
  1.  Yang, S., Linger, J., Franden, A., Pienkos, P. T., and Zhang, M.US14265039. Biocatalysts with enhanced inhibitor tolerance.
  2.   Brown, S., and Yang, S. US20130078691. Microorganisms having enhanced resistance to acetate and related compositions and methods of Use.
  3.    Brown, S., Guss, A., Yang, S., Karpinets, T., and Lynd, L. US20110287499. Nucleic acid molecules conferring enhanced ethanol tolerance and microorganisms having enhanced tolerance to ethanol.
  4.     Brown, S., and Yang, S. US20100311137. Microorganisms having enhanced tolerance to inhibitors and stress.
  5.     Yang, C.-H., and Yang, S. US20100249234 and WIPO WO/2008/124836. Methods of reducing virulence in bacteria.
  6.     杨世辉,杨青. 201811088917.6. 一株耐受低pH的乙醇生产运动发酵单胞菌菌株及其分离筛选方法和应用. 2018年9月19日, 实用新型申请.
  7.     杨世辉、胡蜜蜜、陈香宇,孙玉成. 一种转化高糖产品为酒精饮品的方法及应用. 2019101269018. 2019年2月20日, 发明创造性申请.
  8.     杨世辉,杨青,唐莹,王婷,易犁. 2019101424333. 一种基于YESS分析原核生物中蛋白相互作用的方法. 2019年2月26日, 发明创造性申请.
  9.    杨世辉,王禺,王静文,陈香宇. 2019101149425一种基于诱导性启动子鉴定微生物基因功能的方法. 2019年2月14日, 发明创造性申请.
  10.  杨世辉,沈威,杨永富,黄钜,易犁,马立新. 2019101146357.一种基于双荧光报告基因系统鉴定生物元件的方          法. 2019年2月14日, 发明创造性申请.
  11.  杨世辉,杨永富,李闰霞,马立新. 2019101146520. 包含UTR的双荧光报告基因系统、鉴定sRNA-UTR相互作用的方法. 2019年2月14日, 发明创造性申请.
  12.  杨世辉,杨永富,沈威,黄钜,马立新. 2019101149321. 一种不同强度核糖体结合位点和启动子筛选方法及元件. 2019年2月14日, 发明创造性申请.
  13.  杨世辉,李闰霞,杨永富,马立新. 2019101149340鉴定sRNA与靶mRNA编码区域的作用关系的方法及检测系统. 2019年2月14日, 发明创造性申请.
  14.  杨世辉,杨永富,沈威,李闰霞,黄钜,王禺,易犁,马立新. PCT/CN2019/086173. 一种基于双荧光报告基因系统鉴定生物元件的方法及基于该方法构建的生物元件库.2019年5月9日, 发明创造性申请.
  15.  杨世辉,沈威,彭文舫,马立新.一种基于CRISPR-Cas12a系统的运动发酵单胞菌基因组编辑方法及其应用. 2019年7月30日, 发明创造性申请.
  16.  杨世辉,彭文舫,郑艳丽,易犁,马立新. 一种基于运动发酵单胞菌內源CRISPR-Cas系统的基因组编辑方法及其应用. 2019年7月30日, 发明创造性申请.
  17.  彭文舫,杨世辉,郑艳丽,易犁,马立新. 基于运动发酵单胞菌內源CRISPR-Cas系统的基因组大片段高效删除方法及其应用. 2019年7月30日, 发明创造性申请.
  18.  彭文舫,杨世辉,郑艳丽,易犁,马立新.基于运动发酵单胞菌內源CRISPR-Cas系统的多基因位点同时编辑方法及其应用. 2019年7月30日, 发明创造性申请.
  19.  杨世辉,仇梦月,沈威。一种生产异丁醇的运动发酵单胞菌重组菌株、构建方法及其应用. 2019年8月7日, 发明创造性申请.
  书籍章节:
  1.   Yang Y, Qiu M, Yang Q, Wang Y, Wei H, and Yang S#. 2019. Connecting Microbial Genotype with Phenotype in the Omics Era. In Metabolic Pathway Engineering: Methods and Protocols. Edited by Yannick Bomble and Michael E Himmel. Springer. Heidelberg, Germany.  In Press.
  2.  Yang, S., Wang, W., Wei, H., Himmel, M., and Zhang, M. 2015. Identification of genetic targets to improve lignocellulosic hydrocarbon production in Trichoderma reesei using public genomic and transcriptomic datasets. P177-196. In Direct Microbial Conversion of Biomass to Advanced Biofuels. Edited by Michael E Himmel. Elsevier. New York, US.
  3. Yang, S., Klingeman, D. M., and Brown, S. D. 2012. Ethanol-tolerant gene identification in Clostridium thermocellum using pyro-resequencing for metabolic engineering. P111-136. In Methods in Molecular Biology: Microbial Metabolic Engineering. Edited by Cheng Q. Human Press. New York, US.
  4.   Yang, S., Keller, M., and Brown, S. D. 2011. Genomics on pretreatment inhibitor tolerance of Zymomonas mobilis. P161-176. In: Microbial stress tolerance: from genomics to biofuels Microbiology monographs (Springer series). Edited by Liu Z. L. Springer. Heidelberg, Germany.
  5.   Yang, C.-H., and Yang, S.2008.Managing bacterial plant diseases by modulating quorum sensing and Type III secretory systems. P16-57. In: Biotechnology and Plant Disease Management. Eds. Punja Z.K., De Boer S.H., and Sanfacon H. CABI Publishing. Oxfordshire. UK.
  学术文章(通讯作者#与共同第一作者*; 总引用~2000; H-index: 25)
  Peer-reviewed Publications (#Corresponding author; * Equal Contribution; Citation~2000; H-index: 25):
  Publication Since Joining Hubei University:
  1.   Yang Y*, Shen W*, Huang J, Li R, Xiao Y, Wei H, Chou Y-C, Zhang M, Himmel ME, Chen S, Yi L, Ma L, Yang S#. 2019. Prediction and characterization of promoters and ribosomal binding sites of Zymomonas mobilis in system biology era. Biotechnology for Biofuels. 12:52. (一区)
  2.  Xia J, Yang Y, Liu C, Yang S#, Bai F #. 2019. Engineering Zymomonas mobilis for robust cellulosic ethanol production. Trends in Biotechnology.https://doi.org/10.1016/j.tibtech.2019.02.002. (一区)
  3.    Wei H*#, Yang Y*, Himmel M.E., Tucker M.P., Ding S., Yang S# Arora R#. 2019. Identification and characterization of five cold stress-related rhododendron dehydrin genes: spotlight on a FSK-type dehydrin with multiple F-segments. Frontiers in Bioengineering and Biotechnology. 7:30. (一区)
  4. He Q*, Yang Y*, Yang S#, Donohoe B.S, Wychen S. Van, Zhang M., Himmel M. E., and Knoshaug E.P.#. 2018. Oleaginicity of the yeast strain Saccharomyces cerevisiae D5A. Biotechnology for Biofuels. 11:258.(一区)
  5.     Yang S*#, Vera J. M*, Savvakis G., Moskvin O. V., Yang Y., McIlwain S. J., Lyu Y., Zinonos I., Hebert A. S., Coon J. J., Bates D. M., Sato T. K., Brown S. D., Himmel M. E., Zhang M., Landick R., Pappas K. M#, Zhang Y*#. 2018. Complete genome sequence and the expression pattern of plasmids of the model ethanologen Zymomonas mobilis ZM4 and its xylose-utilizing derivatives 8b and 2032. Biotechnology for Biofuels. 11:125.(一区)
  6.   Wang X*., He Q. *, Yang Y. *, Wang J., Haning K., Hu Y., Wu B., He M., Zhang Y., Bao J., Contreras L. M. # and Yang S#. 2018. Advances and prospects in metabolic engineering of Zymomonas mobilis. Metabolic Engineering. https://doi.org/10.1016/j.ymben.2018.04.001(一区)
  7.   Yang S#, M. A. Franden, Q. Yang, Y.-C. Chou, M. Zhang and P. T. Pienkos#. 2018. Identification of inhibitors in lignocellulosic slurries and determination of their effect on hydrocarbon-producing microorganisms. Frontiers in Bioengineering and Biotechnology 6:23.(一区)
  8.   Yang Y, Hu M, Tang Y, Geng B, Qiu M, He Q, Chen S, Wang X#, Yang S#. 2018. Progress and perspective on lignocellulosic hydrolysate inhibitor tolerance improvement in Zymomonas mobilis. Bioresources and Bioprocessing, 5(1):6.
  9.  Yang, S. *#, Fei., Q.*, Zhang, Y., Contreras, L. M., Utturkar, S. M., Brown, S. D., Himmel, M.E., and Zhang, M#. 2016. Zymomonas mobilis as a model system for production of biofuels and biochemicals. Microbial Biotechnology.9(6), 699–717.
  10.  Yang, S. #, Mohagheghi, A., Chou, Y-C., Franden, M. A., Chen, X. W., Dowe, N., Himmel, M., and Zhang, M. #2016. Metabolic engineering of Zymomonas mobilis for production of 2,3-butanediol from lignocellulosic biomass sugars. Biotechnology for Biofuels9:189.(一区)
  11.  Yang, S. #, Wang, W. #, Wei, H., Wychen, S. V., Pienkos, P. T., Zhang, M., and Himmel, M. 2016. Comparison of nitrogen depletion and repletion on lipid production in yeast and fungal species. Energies. 9:685.
  12. Yi, X, Gao, Q, Zhang, L, Wang, X, He, Y, Hu, F, Zhang, J, Zou, G, Yang, S, Zhihua Zhou, Z, Bao J. 2019. Heterozygous diploid structure of Amorphotheca resinae ZN1 contributes efficient biodetoxification on solid pretreated corn stover. Biotechnology for Biofuels (In Press).(一区)
  13.  Tang Y, Wu P, Jiang S, Selvaraj JN, Yang S, Zhang G.2019. A new cold-active and alkaline pectate lyase from Antarctic bacterium with high catalytic efficiency. Applied Microbiology and Biotechnology. https://doi.org/10.1007/s00253-019-09803-1.
  14.  Li, X., Y. He, L. Zhang, Z. Xu, H. Ben, M. J. Gaffrey, Y. Yang, S. Yang, J. S. Yuan, W.-J. Qian and B. Yang. 2019. Discovery of potential pathways for biological conversion of poplar wood into lipids by co-fermentation of Rhodococci strains. Biotechnology for Biofuels 12(1): 60.(一区)
  15.  Lu Z, Yang S, Yuan X, Shi Y, Ou Y, Peng W, Jiang S, Yi L, Zhang G#. 2019. CRISPR-assisted multi-dimensional regulation for fine-tuning gene expression in Bacillussubtilis. Nucleic Acids Res, In Press.(一区)
  16.  Wu, B.; Qin, H.; Yang, Y.; Duan, G.; Yang, S.; Xin, F.; Zhao, C.; Shao, H.; Wang, Y.; Zhu, Q.; Tan, F.; Hu, G.; He, M.2019.Engineered Zymomonas mobilis tolerant to acetic acid and low pH via multiplex atmospheric and room temperature plasma mutagenesis. Biotechnology for biofuels, 12, 10.(一区)
  17.  Luo, Z., Yang, Q., Geng, B., Jiang, S., Yang, S., Li, X., Cai, Y., Dai, J. 2018. Whole genome engineering by synthesis. Science China Life Sciences, 10.1007/s11427-018-9403-y.
  18. Zhan, Y., B. Sheng, H. Wang, J. Shi, D. Cai, L. Yi, S. Yang, Z. Wen, X. Ma & S. Chen. 2018. Rewiring glycerol metabolism for enhanced production of poly-γ-glutamic acid in Bacillus licheniformis. Biotechnology for Biofuels, 11, 306.(一区)
  19.  Cai, D., S. Hu, Y. Chen, L. Liu, S. Yang, X. Ma and S. Chen. 2018. Enhanced Production of Poly-γ-glutamic acid by Overexpression of the Global Anaerobic Regulator Fnr in Bacillus licheniformis WX-02. Applied Biochemistry and Biotechnologyhttps://doi.org/10.1007/s12010-018-2693-7.
  20.  Huo, Y., Y. Zhan, Q. Wang, S. Li, Yang, S., C. T. Nomura, C. Wang and S. Chen. 2017. Acetolactate synthase (AlsS) in Bacillus licheniformis WX-02: enzymatic properties and efficient functions for acetoin/butanediol and L-valine biosynthesis. Bioprocess Biosyst Eng 41(1): 87-96.
  21.  Xu, Q., E. P. Knoshaug, W. Wang, M. Alahuhta, J. O. Baker, Yang, S., T. Vander Wall, S. R. Decker, M. E. Himmel, M. Zhang, and H. Wei. 2017. Expression and secretion of fungal endoglucanase II and chimeric cellobiohydrolase I in the oleaginous yeast Lipomyces starkeyi. Microb Cell Fact 16(1): 126.
  22.  Cho, S. H., K. Haning, W. Shen, C. Blome, R. Li, Yang S., and L. M. Contreras. 2017. Identification and characterization of 5′untranslated regions (5′UTRs) in Zymomonas mobilis as regulatory biological parts. Frontiers in Microbiology 8:2432.
  23.  Shu, M., Shen, W., Yang, S., Wang, X., Wang, F., Wang, Y., and Ma, L. 2016. High-level expression and characterization of a novel serine protease in Pichia pastoris by multi-copy integration. Enzyme Microb Technol. 92:56-66.
  Previous Publication:
  Biofuels:
  24.  Yang, S.#, Franden, A., Chou, Y-C., Brown, S. D., Pienkos, P. T., and Zhang, M#. 2014. Insights into acetate toxicity in Zymomonas mobilis 8b using different substrates. Biotechnology for Biofuels 7:140.
  25.  Yang, S.#, Pan, C., Hurst, G. B., Dice, L., Davison, B. H., and Brown, S. D.#. 2014. Elucidation of Zymomonas mobilis physiology and stress responses to acetate by quantitative proteomics and transcriptomics.Front. Microbiol.5:246.
  26.  Yang, S., Pan, C., Tschaplinski, T. J., Hurst, G.B. Engle, N. L., Zhou, W., Dam, P., Xu, Y., Rodriguez, M. Jr., Dice, L., Johnson, C. M., Davison, B. H., and Brown, S. D. 2013. Systems biology analysis of Zymomonas mobilis ZM4 ethanol stress responses. PLoS ONE 8(7): e68886.
  27.  Yang, S., Land, M. L., Klingeman, D. M., Pelletier, D. A., Lu, S. T., Martin, S. L., Guo, H. B., Smith, J. C., and Brown, S. D. 2010. Paradigm for industrial strain improvement identifies sodium acetate tolerance loci in Zymomonas mobilis and Saccharomyces cerevisiae.Proc. Natl. Acad. Sci. USA. 107: 10395–10400.
  28.  Yang, S., Pelletier, D. A., Lu, S. T, and Brown, S. D. 2010. The Zymomonas mobilis regulator Hfq and related Saccharomyces cerevisiae proteins contribute to tolerance against multiple lignocellulosic pretreatment inhibitors. BMC Microbiology 10: 135.
  29.  Yang, S., Pappas, K. M., Hauser, L. J., Land, M. L., Chen, G-L, Hurst, G.B. et al. 2009. Improved genome annotation for Zymomonas mobilis. Nature Biotechnology 27: 893 –4.
  30.  Yang, S., Tschaplinski, T. J., Engle, N. L., Carroll, S. L., Martin, S. L., Davison, B. H., Palumbo, A. V., Rodriguez, M. Jr., and Brown, D., S. 2009. Transcriptomic and metabolomic profiling of Zymomonas mobilis during aerobic and anaerobic fermentation. BMC Genomics 10: 34. (Highly accessed).
  31. Wang, W*#., Yang, S.*#, Pienkos, P. T., and Johnson, D. 2014. Connecting lignin-degradation pathway with pretreatment inhibitor sensitivity of Cupriavidus necator.Front. Microbiol.5:247.
  32.  Yang, S.#, Guarnieri, M. T., Smolinski, S., Ghirardi, M., and Pienkos, P. T. 2013.De novo transcriptomic analysis of hydrogen production in the green alga Chlamydomonas moewusii through RNA-Seq. Biotechnology for Biofuels 6:118.
  33.  Wilson, C. M.*, Yang, S.*, Rodriguez, M. Jr., Ma, Q, Johnson, C. M., Dice, L., Xu, Y., and Brown, S. D. 2013.Clostridium thermocellum transcriptomic profiles after exposure to furfural or heat stress. Biotechnology for Biofuels 6:131.
  34.  Yang, S., Giannone, R. J., Dice, L., Yang, Z. K., Engle, N. L., Tschaplinski, T. J., Hettich, R. L., and Brown, S. D. 2012. Clostridium thermocellum ATCC27405 transcriptomic, metabolomic and proteomic profiles after ethanol stress. BMC Genomics13:336.
  35. Xu, Q., Resch, M., Podkaminer, K., Yang, S., Baker, J., Donohoe, B., Wilson, C., Klingeman, D. M., Olson, D., Decker, S., Giannone, R. J., Hettich, R. L., Brown, S. D., Lynd, L. R., Bayer, E. A., Himmel, M. E., and Bomble, Y. 2016. Dramatic performance of Clostridium thermocellum explained by its wide range of cellulase modalities. Science Advances. 2(2): e1501254.
  36. Chou, Y-C., Linger, J., Yang, S., and Zhang, M. 2015. Genetic engineering and improvement of a Zymomonas mobilis for arabinose utilization and its performance on pretreated corn stover hydrolysate. J. Biotechnol. Biomater.  5:2.
  37. Mohagheghi, A., Linger, J., Yang, S., Smith, H., Dowe, N., Zhang, M., and Pienkos, P. T. 2015. Improving a recombinant Zymomonas mobilis strain 8b through continuous adaptation on dilute acid pretreated corn stover hydrolysate. Biotechnology for Biofuels 8:55.
  38.  Zeng, Y., Zhao, S., Yang, S., and Ding, S. 2014. Lignin plays the negative role in the biochemical process for producing lignocellulosic biofuels. Curr. Opin. Biotechnol.27: 38-45.
  39.  Mohagheghi, A., Linger, J., Smith, H., Yang, S., Dowe, N., and Pienkos, P. T. 2014. Improving xylose utilization by recombinant Zymomonas mobilis strain 8b through adaptation using 2-deoxyglucose. Biotechnology for Biofuels 7: 19.
  40.  Wei, H., Fu, Y., Magnusson, L., Baker, JO., Maness, PC., Xu, Q., Yang, S., Bowersox, A., Bogorad, I., Wang, W., Tucker, MP., Himmel, ME., Ding, S. 2014. Comparison of transcriptional profiles of Clostridium thermocellum grown on cellobiose and pretreated yellow poplar using RNA-Seq. Front. Microbiol. 5:142.
  41.  Guarnieri, M. T., Nag, A., Yang, S., and Pienkos, P. T. 2013. Proteomic analysis of Chlorella vulgaris: Potential targets for enhanced lipid accumulation. J Proteomics. pii: S1874-3919(13)00278-9.
  42.  Brown, S. D., Guss, A. M., Karpinets, T. V., Parks, J. M., Smolin, N., Yang, S., Land, M. L., et al. 2011. Mutant alcohol dehydrogenase leads to improved ethanol tolerance in Clostridium thermocellum. Proc. Natl. Acad. Sci. USA. 108: 13752-7.
  43.  Bochner, B., Gomez, V., Ziman, M., Montgomery, S., Yang, S., and Brown, S. D. 2010. Phenotype MicroArray profiling of Zymomonas mobilis ZM4. Appl. Biochem. Biotech. 161:116-123.
  Molecular Microbe-Plant Interactions and others:
  44.  Yang, S., Peng, Q., Zhang, Q., Zou, L., Li, Y., Robert, C. et al. 2010. Genome-wide identification of HrpL-regulated genes in necrotrophic phytopathogen Dickeya dadantii 3937. PLoS ONE 5(10): e13472.
  45.  Yang, S.*, Peng, Q.*, San Francisco, M., Wang, Y., Zeng, Q., and Yang, C.-H. 2008. Type III secretion system genes of Dickeya dadantii 3937 are induced by plant phenolic acids. PLoS ONE 3(8): e2973.
  46.  Yang, S., Zhang, Q., Peng, Q., Yi, X., Chang, J. C., Reedy, R. M., Charkowski, A. O., and Yang, C.-H. 2008.Dynamic regulation of GacA in type III secretion system, pectinase gene expression, pellicle formation, and pathogenicity ofDickeyadadantii.Mol. Plant-Microbe Interact. 21: 133-142.
  47.  Yang, S., Zhang, Q., Guo, J., Charkowski, A. O., Glick, B. R., Ibekwe, A. M., Cooksey, D. A., and Yang, C.-H. 2007. Global effect of indole-3-acetic acid (IAA) biosynthesis on multiple virulence factors of Erwinia chrysanthemi 3937. Appl. Env. Microbiol. 73:1079-1088.
  48.  Peng, Q.*, Yang, S.*, Charkowski, A. O., Yap, M. N., Steeber, D. A., Keen, N. T., and Yang, C.-H. 2006. Population behavior analysis of dspE and pelD expression in Erwinia chrysanthemi 3937. Mol. Plant-Microbe Interact. 19: 451-7.
  49.  Yang, S., Perna, N. T., Cooksey, D. A., Okinaka, Y., Lindow, S. E., Ibekwe, A. M., Keen, N. T., and Yang, C-H. 2004. Genome-wide identification of plant-upregulated genes of Erwinia chrysanthemi 3937 using a GFP-based IVET leaf array. Mol. Plant-Microbe Interact. 17: 999-1008.
  50.  Chou, W-C., Ma, Q., Yang, S., Cao, S., Brown, S. D., and Xu, Y. 2015.Analysis of strand-specific RNA-seq data using machine learning reveals the structures of transcription units in Clostridium thermocellum. Nucleic Acids Res. doi: 10.1093/nar/gkv177.
  51.  Wei, H., Brunecky, R., Donohoe, BS., Ding, S., Ciesielski, PC., Yang, S., Tucker, MP., and Himmel, ME. 2015. Identifying the relatively abundant, ionically bound cell wall and intracellular glycoside hydrolases and carbohydrate esterases in late growth stage Arabidopsis stems: implications for the genetic engineering of bioenergy crops. Front. Plant Science. 6:315.
  52.  Glasner, J. D., Yang, C.-H, Reverchon, S., Hugouvieux-Cotte-Pattat, N., Condemine, G., Bohin, J., Van Gijsegem, F., Yang, S., etc. 2011. Genome sequence of the plant pathogenic bacterium Dickeya dadantii 3937. J. Bacteriol. 193:2076-7.
  53.  Okinaka, Y. Perna, N. T., Yang, S. Keen, N. T., and Yang, C-H. 2006.Identification of potential virulence genes in Erwinia chrysanthemi 3937; transposon insertion into plant up-regulated genes. J. Gen. Plant Pathol. 72:360-8.
  54.  Schijven, J. F., Bradford, S. A., Yang, S. 2004.Release of Cryptosporidium and Giardia from dairy cattle manure: physical factors. J. Environ. Qual. 33:1499-1508.
  55.  Yang, S., Fang, C., and Zhang, L. 2000. A staining method used for observing protoplast under the light microscope. Microbiology (Chinese) 27:55-7.
  近期项目:
  1.国家重点研发计划“合成生物学”重点专项(科技部),高版本模式微生物底盘细胞,105万,2019-2023,子课题负责人
  2.湖北省中央引导地方科技发展专项(湖北省科技厅),湖北省生物催化与酶工程国家重点实验室建设,300万,2018-2019,主持
  3.湖北省技术创新专项最大项目(湖北省科技厅),废弃生物资源发酵生产聚γ-谷氨酸和乙醇关键技术研究,200万,2018-2021,共同主持(Co-PI)
  4.湖北省生物资源绿色转化协同创新中心启动经费(湖北省科技厅),400万,2016-2021,主持
  5.NREL LDRD. Small RNA and Riboswitches: A New Frontier for Biofuels Strain Engineering. 2015-2017. Eric Knoshaug (PI), Shihui Yang (Co-PI), and Bryon Donohoe (Co-PI).
  6.NREL LDRD Seed Project. 2015. Integrated Approach to Connect Genetic Profiles with Microstructural Phenotypes Involved in Biofuel Production in Green Algae. Alexandra Dubini (PI), Shihui Yang (Co-PI), and Peter Ciesielski (Co-PI).
  7.DOE Office of Science, Systems Biology of Bioenergy-Relevant Microbes to Enable Production of Next-Generation Biofuels. 2014. Unravel lipid accumulation mechanism in oleaginous yeast through single-cell systems biology study. Sunney Xie (PI), Shi-You Ding (Co-PI). Shihui Yang (Key personnel on single-cell transcriptomic data analysis and metabolic engineering).
  8.NREL License Revenue-Funded Project. 2013-2014. Genetic elements and microorganisms conferring enhanced tolerance to pretreated corn stover hydrolysate. Shihui Yang (PI).

返回列表 本文标签:
565net必赢最新版
关注我们:
565net必赢最新版
关注我们: